MATH 3060 Tutorial 4

Chan Ki Fung

October 5, 2022

- 1. Let d_1, d_2 be two metrics on a set X. Suppose d_1 is stronger than d_2 .
 - (a) Let $\{x_n\}$ be a sequence in X that is convergent with respect to d_1 . Show that $\{x_n\}$ converges with respect to d_2 as well.
 - (b) Let Y be another metric space, and $g: Y \to X$ is a map that is continuous with respect to d_1 , show that g is also continuous with respect to d_2 .
 - (c) Let Z be another metric space, and $f: X \to Z$ is a map that is continuous with respect to d_2 , show that f is also continuous with respect to d_1 .
 - (d) Let $U \subset X$ be a subset that is open with respect to d_2 , show that U is also open with respect to d_1 .
- 2. (a) Let (X, d) be a metric space, show that d' = d/(1+d) is a also a metric.
 - (b) Show that a sequence $\{x_n\}$ converges with respect to d if and only if it converges with respect to d'
 - (c) Show by example that d' may not be stronger then d.
- 3. Let (X,d) be a metric space. Let $C_0(X)$ be the set of bounded continuous functions from X to \mathbb{R} , let ρ be the metric on $C_0(X)$ defined by $\rho(f,g) = \sup_{x \in X} |f(x) g(x)|$. For each $x \in X$, consider the function $l_x : X \to \mathbb{R}$ defined as $l_x(y) = d(x,y)$. Show that $l_x \in C_0(X)$, and the assignment $x \mapsto l_x$ is continuous.
- 4. (Bolzano-Weierstrass?) Let X be the set of real-valued continuous functions on $[-\pi, \pi]$. Let $\{f_n\}$ be a sequence in X, bounded in L_2 norm. Does $\{f_n\}$ have a Cauchy subsequence?